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A Truly Noninterpolating Semi-Lagrangian Lax-Wendroff Method
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A truly noninterpolating semi-Lagrangian method has been
developed. It is based upon a madification of a standard Lax-Wendroff
scheme and is unconditionally stable on a regular rectangular grid. The
method is explicit and second-order accurate in both time and space. it
is suggested that the computational cost and memory allocation
required by this method are the least possible for a semi-Lagrangian
algorithm of this order of accuracy. The numerical experiments
presented indicate that the algorithm is very accurate indeed. ® 1994
Academic Press, Inc.

1. INTRODUCTION

The evolution of a large number of physical systems may
be described, either entirely or in part, by the following
partial differential equation:

Qﬂ+u-v¢:vvz¢+ﬂ

at ()

where u is the velocity vector and the functions ¢, v, and f
may have a variety of physical interpretations. In the con-
text of fluid dynamics (1) may describe, for example, the
advection-diffusion of a temperature field in which case ¢, v,
and f represent, respectively, nondimensional temperature,
space-independent thermal conductivity, and heat genera-
tion rate. The advection—diffusion of a velocity component
in a solenoidal fluid flow with negligible second viscosity
may also be described by (1) in which case ¢, v, and f
represent, respectively, nondimensional velocity compo-
nent, kinematic viscosity, and a combination of internal and
external forces.

We are specifically interested in an often-encountered
class of advection-diffusion equations in which the typical
magnitude of the advective velocity, u, is sufficiently high so
that the second term on the left-hand side of (1) dominates
either of the terms on the right-hand side. Such equations
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are referred to as advection dominated. This paper focuses
on the numerical simulation of the advection process.

2. SEMI-LAGRANGIAN SCHEMES

Explicit Eulerian schemes employed te approximate the
advection process are often subject to a constraint which
imposes an upper limit on the Courant number such as, for
example, the CFL stability condition (this subject is
thoroughly covered in intermediate level treatiments such as,
for example, [9, 12]). Implicit Eulerian schemes, although
often unconditionally stable, exhibit damping which
increases rapidly with the Courant number. Consequently,
the magnitude of the time step in Eulerian schemes is
usually restricted, due to considerations of either stability or
damping, by a value which may be significantly smaller than
a typical time interval related to the temporal scale on
which the system of interest actually evolves. In advection-
dominated equations the hyperbolic character of the
transport process may be exploited, which leads to the use
of Lagrangian schemes. From the numerical stability
perspective the conceptual difference between Eulerian and
Lagrangian schemes is simply that the stability of an
Eulerian scheme is related to the magnitude of the advective
velocity while the stability of a Lagrangian scheme is related
to the variation of the advective velocity. For example, if the
velocity is constant then there is no pumerical reason
to restrict the time step of a Lagrangian scheme. This
difference between FEulerian and Lagrangian schemes is
expressed by the fact that the former are usually more
restrictive than the latter in so far as the time step is con-
cerned. The drawback of Lagrangian schemes lies in the fact
that following fluid particles may lead to deterioration of
the spatial resolution in some parts of the domain. It seems
therefore that the best of both worlds may be achieved by
the use of semi-Lagrangian schemes.

In a semi-Lagrangian scheme the grid points are
stationary and the fluid particles are advected using a
Lagrangian scheme for a single time step. The information
is then projected onto the stationary grid. A different set of
fluid particles is chosen for advection at each time step, and
they are chosen so as to arrive at the precise locations of the
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grid points. Thus, the resolution of the domain remains
regular, and the magnitude of the time step is not restricted
by the constraints of Eulerian schemes, To outline the
essentials of a general semi-Lagrangian scheme let us
assume that the right-hand side of (1) may be represented
by some function R, ,- We are therefore concerned
with constructing a numerical solution to the differential
equation,

%=(%+n-V)¢=R (2)

which describes the change of ¢ along a characteristic
—=u (3

If the material derivative is approximated by an O(A¢%)
accurate three-time-level explicit scheme then the numerical
equivalent of (2) is

¢[xi.r"+1) = ¢(x372¢1r u -l + 241 R(xi—Aru.-’”J’ (4}
where x, represents the coordinates of grid pointi in the
{multidimensional) domain and x; — 24¢ u is the departure
point of the fluid particle arriving at x;.

In general, neither the departure point of a fluid particle,
x;— 24t u, nor the point the which R must be evaluated,
x; — 4t u, coincide with a grid point. Therefore the terms on
the right-hand side of (4) must be determined by inter-
polation of data known at the time levels " and "',
Robert [10] suggested that this explicit three-time-level
method may be replaced by a semi-implicit two-time-level
method of the same, G{4¢?), accuracy by halving the advec-
tion time interval used in (4), yielding the equation,

¢<xi‘r’“‘) = ¢(XiﬁA“lJ") + % At [R(x;,r"“} + R(xi—m u.!")]’ (5)

where x; — At u is the departure point of the Muid particle.
This scheme requires interpolation of data at the time
level 1" and evaluation of R as an average between the fluid
particle points of departure and arrival in the time-space
domain. The schemes suggested by (4) and (5) establish the
basis of the traditional forms for semi-Lagrangian methods
{see [14] for a recent review and list of references). Another
typical semi-Lagrangian scheme, although not referred to as
such, is described in [57. In this scheme, which is only first-
order accurate in time, the departure point of the particle is
a grid point and at the end of the time step the advected
property is distributed among the grid points surrounding
the arrival point. All schemes mentioned so far require
spatial interpolation of data either at the beginning or at the
end of the advection time interval. Such interpolation may
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lead to smoothing and constitutes an extremely costly
operation.

An alternative method which requires no interpolation at
any of these time levels was suggested in [11]. This method
is based on the following modification of (2),

o 3 o
E+u-V¢—at+(U;+“R)‘V¢—R’ (6)

rewritten as

%+U;-V¢=R_“R"7¢ (7)

which describes the change of ¢ along a characteristic

dx
praalY (8)
and where u, =u—u, is the velocity vector connecting the
fluid particle departure point to the nearest grid point.
The remainder of the velocity, u,, is the velocity vector
connecting that grid point to the (grid) point at which the
fluid particie will arrive. On a grid in which the grid
points are located along lines parallel to the spatial axes
u, = p - 4x/At, where the components of the vector p repre-
sent the (integer) number of grid lengths traveled by a fluid
particle in each spatial direction during the advection time
interval. The fth component of the vector p is evaluated
using the ith component of the velocity vector u and the grid
length in the ith direction,

p;=nint(C;), (9)

where nint(C;) indicates the integer nearest C;, and C,=
u; At/Ax; is the Courant number in the ith direction. In
other words, the ith component of u, is chosen in such a
manner that the fluid particle arriving at a grid point
departs p, grid points away. It should be noted that if
C; < 0.5 then p; =0, in which case a noninterpolating semi-
Lagrangian scheme is equivalent to an Eulerian scheme. An
0(A1?) accurate approximation of (7) is the three-time-level
scheme,

qﬁ[xi,r"*‘)_ ¢(xi—2Alu;,r”*1J =241t (R_“R 'V¢)(xi—dru,‘1")=
(10)

where (X, — 241 u;) is the grid point nearest the departure
point of the fluid particle. This is the original method
suggested by Ritchie in [11] and it was termed noninter-
polating. Although this method eliminates the interpolation
related to the data at the departure point of the {luid par-
ticle, the point at which the right-hand side of (10) is
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evaluated, (x;— At u,), does not in general coincide with a
grid point. Therefore the formulation (10) still requires
interpolation of data at the time level ¢”, This is true even for
pure advection, ie, R=0.

To complete this very brief review of semi-Lagrangian
methods, there exists yet an additional method that is useful
(mostly) for conversion of an Eulerian scheme to a semi-
Lagrangian scheme. This method suggests the employment
of an Eulerian scheme for advection from the particle depar-
ture point to the nearest grid point and then a Lagrangian
scheme for advection from there to the arrival grid
point [13].

3. A NONINTERPOLATING SEMI-LAGRANGIAN
LAX-WENDROF¥F METHOD

Lax-Wendroff methods are traditionally employed for
the solution of the following forcing- and dissipation-free
equation:

o

@ _u.vs
o= vV

{11)
The neninterpolating (semi-) Lagrangian advection for-
mulation, on the other hand, requires the solution of the
equation,

d¢

E: —uR-qu.

(12)
The similarity between these two equations is obvious. The
dependent variable ¢ may be expanded along a charac-
teristic using the single-variable Taylor series,

T L)
Brran=0n+ e

m=1

(13)

and the one-step noninterpolating semi-Lagrangian Lax—
Wendrofl method consists of the substitution of

dm'

ﬁ=(—un'v)m,

m=1,2, .., (14)

into (13). After this substitution the semi-Lagrangian two-
time-level explicit scheme of O(4¢)* accuracy may be
obtained,

¢(xi.r"“) = ¢(xifdr w, ")
Arln

2
+| £ 2w L)
m=1 m. (xj— A uy 1)
where (x; —4¢u,) represents the coordinates of the fluid
particle departure (grid) point. If ugz=u then u,=0, the
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material derivative in (14) is replaced by a partial derivative
with respect to time, and the semi-Lagrangian formula-
tion (15) reduces to a traditional (i.e., Euierian) Lax—
Wendrofl scheme.

The temporal accuracy of (15) may be improved by
including higher order terms in the summation on the right-
hand side of (15) and/or by averaging the summation
between the grid points of particle departure and arrival in
the time-space domain. An alternative method of achieving
this goal for an Eulerian advection scheme was presented by
Donea in [3]. This method is based upon a semi-discrete
representation of (11) and is known in the “finite element
world” as the Taylor—Galerkin method. In this scheme the
Lax—Wendroff methoed is employed to calculate the O(Ar)
and the O{41)” terms, but rather than evaluating the O(Ar)?
term in (13) using a higher spatial derivative, as prescribed
by (14), the term is evaluated using the approximation,

a4 8 ¢ P ixi oy~ By
_—— Vit d= . 1 . p o ] A
P a!(u ) é=(u-V) 2 (u-V}) oY ,
(16)
where use is made of
62
3= (-Vy, (17)

ot

and the remaining first-order partial time derivative is
approximated by forward Euler differencing. The Taylor—
Galerkin method may employ any time-differencing scheme,
and the forward Euler method is chosen here only to
illustrate the basic principles. The resulting version of (11)1s
the equation

[1—4(dru-VY] ¢ e,

=[1—-Atu-V+i{dru-V)’] B ex e (18)
which is discrete in time but continuous in space and hence
termed semi-discrete. Although originally suggested as a
finite element method this semi-discrete equation may also
be used in a finite difference formulation. The method may
be converted to a semi-Lagrangian form by substituting u,
and ¢, _ ., foruand ¢ . . in(18).

Another interesting finite element method which makes
use of advected weighting functions was suggested by
Benque et al. in [1]. The basic principle of this method may
be illustrated by applying it to the foliowing conservation
equation.

o

—4u-V¢=0.

Y (19}

To obtain the weak formulation (19) is multiplied by a
weighting function ; and integrated over the spatial
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domain Q and, contrary to the usual practice, also over the
time step 41, thus yielding the equation

[, Low) == @ur1=] | ¢ (%+ u -ij) =0, (20)

where, for simplicity, a solenoidal velocity vector and
homogeneous boundary conditions were assumed. The time
dependent weighting functions are conserved along the
characteristics; therefore the second integral in (20)
vanishes, To provide a distribution for the weighting func-
tions at some point of time, they are made to coincide with
the basis functions at the end of a time step, viz.,

Y%, 1+ 1y = E(x) (21}

where {£} are the basis functions used to approximate the
dependent variable ¢.

Karpik [7] developed Benque's scheme further and
conducted a series of numerical experiments showing that
the results provided by this scheme are superior to those
provided by Ritchie’s scheme and by two widely used finite
element methods, namely the streamline upwind/Petrov—
Galerkin [6] and the Taylor-Galerkin methods. However,
to different extents, they all suffer from undershoots (as
shown in [7]) and will therfore generate unacceptable
results when simulating advection of a property which
is positive definite such as, for example, density of a
compressible fluid or moisture in the atmosphere. While
all three finite element schemes exhibit performance which
is superior to that of a finite difference Lax—Wendroff
scheme, the performance of a Lax—Wendroff scheme may be
considerably improved at relatively low cost by the use of a
monotonicity preserving method such as the flux corrected
transport (FCT), the total variation diminishing (TVD), or
the essentially non-oscillating (ENO) methods; a detailed
treatment of the FCT and the TVD methods and an exten-
sive list of references are provided in [8], and the ENO
method is described in [4].

One is then faced with the issue of the relative efficiency
of the Lax—Wendroff and Benque methods described above.
Like all finite element methods Benque’s scheme is implicit,
thus resulting in a system of equations which must be solved
simultaneously. Unless the problem is one-dimensional and
linear basis functions are used, in which case a tri-diagonal
matrix is obtained and the Thomas algorithm [9] may be
employed, the solution of such systems requires a number of
floating point operations which is proportional to N*, where
N is the number of degrees of freedom of the system and s
is always greater than one. On the other hand, implementa-
tion of the FCT method with the explicit Lax-Wendroff
scheme requires a number of floating point operations
which is proportional to N. Clearly, the FCT-modified
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Lax—Wendroff method will be more efficient than Benque’s
scheme and any other finite element method.

Since the stability restriction of the explicit Eulerian
formulation is circumvented by semi-Lagrangian schemes
it seems that implicit schemes (both Eulerian and semni-
Lagrangian) offer no compensation for the additional cost
of their implementation, Further discussion will therefore be
focused upon the explicit finite difference semi-Lagrangian
Lax—Wendroffl scheme. A monotonicity preserving method
such as the FCT may be implemented with the explicit
semi-Lagrangian Lax—Wendroff scheme given by (15).
Compared to Eulerian Lax—Wendrofl schemes the semi-
Lagrangian version requires no additional steps in order to
implement the FCT method. The one-dimensional version
of (15) was implemented using centered differences to com-
pute the spatial derivatives and modified using the FCT
method {see Phoenical Lax-Wendroff in [2]). An initial
test was performed in which a square wave 20 grid lengths
wide was advected using a Courant number of 2.5. For
reasons which will be explained later a Courant number
whose noninteger part is 0.5 provides the most stringent test
of the semi-Lagrangian Lax—Wendroff algorithm. Using
periodic boundary conditions the square wave was advected
five times through a domain represented by 100 grid points,
and the analytical and numericai solutions are shown in
Fig. 1. The five crossings of the domain required 200 time
steps, and the results shown in the figure indicate that the
algorithm performs extremely well.

4. ANALYSIS OF THE SUGGESTED SCHEME
IN TWO DIMENSIONS

A quadrilateral grid, the computational molecule for
which 15 shown in Fig. 2a, may be easily mapped onto a
regular rectangular grid. For this purpose new axes, x’ and
¥', may be defined in a manner such that the grid points are
located along them as shown in the figure. The resulting
computational molecule is shown in Fig. 2b, The noninter-
polating semi-Lagrangina Lax—Wendroff scheme will there-
fore be analyzed on the regular rectangular grid. On this
grid a grid point belongs to and is surrounded by four rec-
tangles. Let the grid points belonging to this computational
molecule be numbered as shown in Fig. 2b, and let the
dimensions of each rectangle be Ax x Ay.

4.1. The Lax—Wendroff Method Using the Taylor Expansion
in Space

The spatial derivatives at the center point of the computa-
tional molecule may be evaluated using a finite difference
formulation. For this purpose the vaiues of the dependent
variable ¢ at the eight outer points of the computational
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FIG. 1. Numerical and analytical results of a one-dimensional advec-
tiort of a square wave. The wave was advected through the domain five
times. The numerical results (solid ling) were obtained for a Courant num-
ber of 2.5 using the noninterpolating semi-Lagrangian Lax-Wendrolf
method with FCT.

molecule shown in Fig 2b are approximated using the
multidimensional Taylor series, viz.,

Serdot b, Ax,+3,. AV, + 10 Ax;

+ (ﬁx_v Axk Ayk + l2(}5_\;1‘ Ayi: (22)

where the subscript & indicates the number of the outer
point (1 to8), the subscripts x andy indicate partial
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derivatives, and 4x,, 4y, are the distances from point & to
point 0. Using (22) the spatial derivatives Do By Devr By
and ¢,, required in (15) may be calculated by appropriately
choosing five out of the eight points surrounding the center
point. For best results, we use the points numbered 2, 4, 6,
and 8, and one of the corner points numbered 1, 3, 5, or 7.
These four combinations vield the same formulae for ¢, ¢,
., and ¢.,, and, for improved accuracy, the formula used
for ¢, is the average of the formulae obtained from the four
combinations, viz.,

¢ =¢i+1‘j_¢i~l‘j ¢ =¢i+l,j_2¢i‘j+¢i—l._,i
x 2Ax H] xx sz i
(23}
¢ =¢i,}'+1_¢i,j—l ¢ =¢i,_j+1*2¢i,j+¢i.j—l
r 2 A}’ ’ e A}’2 Ll
b =¢i—l.j71+¢j+l,j+l_¢i+_l,j—l'_¢'j—'l.j+l
x dAx Ay ’

where ; and j are grid point indices in the x and y directions,
respectively.

During the time step a fluid particle is advected from the
grid point (x;, ¥;) to the grid point (X, ,, ¥4+ ¢) ViZ,

Aru,=p Axi+qdyi. (24)

Introduction of (23) and (24) into (15) yields the equation

)1' CTCV
T sra= AL == O+
X(¢;-1J-1 1+1,j+1_ ?+1‘_;'g1—¢:’71.j+1)

+_- i:(élﬁ-l J(l + C.t]J¢?+‘,Aj(1 _Cx)]

C,

+—2— [, (1+C)=¢7,, (1-C)]  (25)

4y

4x —

FiG. 2. Computational molecules on {a) general quadrilateral grid, (b) regular rectangular grid.

581112724
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where C,=u_ At/4x and C, =u At/Ay are the residual
Courant numbers based on the residual velocity up=u i+
u, j. The stability of (25} is examined by studying solutions
of the form

Hkox +kJ-_v+ w?)
3

¢(x.y,r) =€ (26)

where &, and k, are the wave numbers and 7=,/ — 1. Sub-
stituting (26) into (25) and dividing through by ¢7, yields

lCptOraredt = — C2(1 —cos ) — C3(1—cos 8,)
—C.C,sinf, sinf,

—I{C,sin@,+C,sind,), 27
where 0, =k 4x and 8,=k, Ay. By definition max(|C.1,
|C,1) < 0.5. Therefore, the sum of the squares of the real and
the imaginary parts on the right-hand side of (27) does not
exceed unity, thus assuring the realty of w, 1., the uncondi-
tional stability of (25).

The damping of the scheme is examined by assuming the
solution to (25),
- Ane[[iﬁ“-tjﬂ"-)’

)

¢ (28)

where 4 =4, ¢, 6,0, 15 the (complex) damping coefficient
which is equal to the right-hand side of (27). Clearly,
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stability of the scheme implies that |A|>< 1. Since the
damping depends upon four independent variables it is not
amenable to examination by, for example, plotting the
damping factor as a function of some of the independent
variables while holding the others at constant values.
However, some insight into the damping of the scheme may
be gained by averaging | 4|2 over all possible values of the
four independent variables using the equation

1 2r 2 1/2
= jo do, L do, j_m

4n?
172 5
xJ L A0 Ml o ane

which yields the result |A|?=Z%. Further insight may be
gained by examining the damping of the one-dimensional
version of (25) which yields the expression

|42 dC,

(29)

[A?=1—-C31 -C3)(1 —cos 8,)%, (30)
clearly indicating that the damping of the scheme increases
with the absolute vaiue of the residual Courant number and
that it is independent of the number of grid lengths traveled
by the fluid particle during the time step. Since in a non-
interpolating semi-Lagrangian Lax—Wendroff scheme the

—
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nondimensional wavelength

FIG. 3. The square of the magnitude of the damping coefficient, 4, as a function of nondimensional wave length for several values of the residual

Courant number.
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absolute value of the residual Courant number does not
exceed 0.5 the damping of this scheme is less than that of an
Eulerian Lax—Wendroff scheme in which the value of the
Courant number may be as high as 1.0. The value of | 4|2 as
a function of the residual Courant number C_ and the non-
dimensional wave lenght 2n/k, Ax is shown in Fig. 3. The
normalised phase speed is also obtained from the one-
dimensional version of {25) yielding

U* _ ] ] tan - Cx Si[] 0.\: (31)
v P T M T T e i —cos e ) |

|

20
a
13
16 1
14
12
1.0 1
R s KCi=0.1
- —— e IC02
/i ——— K03
K h
s ‘/ ——— Ci=04
| —- - . 1005
4 //
I/
.2 e
0 . . v . ' .
2 1 4 S & 1 8 9 10
2.0
c
1.2 1
16 1
14 1
1.2 ¥
..‘.""-
T——— —————
1.0 ‘—‘:__-_';_“_':._____.———-———-_.—a-:—-m
il
s ¥ €=-0.50
—— e C24025
6 — - — C=000
———- =025
) — — — - C=050
2
0 v . - v v T -
2 3 4 S & 1 & 9 10
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where u* and U are, respectively, the numerical and the
analytical signal propagation speeds. Ideally the normalised
phase speed would equal unity. It is clear from (31) that the
normalised phase speed asymptotically approaches unity
for all wave numbers as the value of p increases. The phase
speed as a function of the nondimensional wave length and
the residual Courant number is depicted in Figs. 4a to 4d
which show the phase speed for p=0, p=1, p=2, and
p =3, respectively, and in Figs. 5a and 5b which show the
normalised phase speed as a function of the nondimensional
wave length and the number of grid lengths traveled by the

20
b
1.8 1
1.6 1
14 1
1.2 1 S~
— —_—_
0 e — e . e e e
s 7,7 C=10.50
vV - — C=-0.25
& 1 -— - — C=0.00
—— - C=0.25
4 - — — - C=0.50
21
0 T v v v v
2 3 4 5 [ 7 8 9 10
2.0
d
1.8 h
1.6 1
1.4
12
‘-—-.._-_' T
1.0 ::'_'_::_—_‘-_;_—_—_ e S
b
8 7 —— =050
— — C=90.25
£ 1 - - — C=000
—— —- C=02
4 — = = - C=050
2
2 3 4 5 [ 7 8 9 10

FIG. 4. The normalised phase speed as a function of nondimensional wave length and residual Courant number: (a) p=0; (b)p=1; (c}p=2;

dyp=3
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FIG. 5. The normalised phase speed as a function of nondimensional wave length and the number of grid lengths traveled by the fluid particle during

the time step: (a) C,=025; (b) C, = —0.25.

fluid particle during the time step for C,.=0.25 and
C,= —0.25, respectively. From this discussion of damping
and phase speed it is concluded that, although the main pur-
pose of the semi-Lagrangian schemes is to increase the time
step of the integration, the suggested Lax~Wendroff scheme
offers the serendipitous advantages of weaker damping and
improved phase speed when compared to its Eulerian
counterpart.

The Lax-Wendroff method which employs the multi-
dimensional Taylor expansion to calculate the spatial
derivatives required in (15} is suitable for application on a
grid which allows for an inambiguous approximation of
these spatial derivatives, such as a grid on which each grid
point is connected to five other grid points. However, on an
unstructed grid a grid point may be connected to any num-
ber of other grid points while employment of the truncated
Taylor expansion to calculate the spatial derivatives makes
use of the data at five of the surrounding grid points, thus
ignoring some of the available information and providing
less than optimal accuracy. Another option to calculate the
spatial derivatives is by fitting a function of the appropriate
differentiability (e.g, ¢=a¢+ @, x+a, y+a, x> +a,y* +
asxy) to the data in the vicinity of the central point. This
simplistic solution, however, offers an extremely limited
interpretation of the solution of (11}, since it ignores the
integral constraint of the conservation of “mass,” [, ¢ dQ2 =
const. It is therefore suggested that employment of the flux
(or control volume) formulation should yield more accurate
results than those obtained using the Taylor expanston, The
flux formulation is the subject of the next section.

4.2. The Lax—Wendroff Method Using the Flux Formulation

The conservation equation (11) is a particular case of the
equation

% V. F=0
ot

(32)
which is obtained by applying the divergence theorem to the
integral conservation law expressed by

d

aL;;sam[sF-afS=0,

(33)

where § is the surface enciosing the volume ¥V, and F = ¢u
is the flux of ¢. Assuming that ¢ represents the average
over ¥, Eq. (33) may be discretised in time yielding

¢n+l=¢n_d_;[ F"“'Q-dS, (34)
M

where, to obtain a second-order accuracy in time, the flux
integral must be evaluated at the time level n + 1. Assuming
a constant advecting velocity, Eq. (34) may be rewritten as

¢.n+l:¢n_d_pfu_j ¢n+l;’2ds‘ (35)
5

For numerical solution of (35) the locations of ¢ at times ¢,
2+ 12 and "*! must be defined. Since the values of ¢" and
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#" ! represent the averages over the volume V these values
must be evaluated at the centroid of the volume V, while the
value of ¢” * 2 must be known on the surface S. In the com-
putational domain the surface § will normally consist of
straight line segments or planes (in two or three dimensions,
respectively). Therefore the values of ¢"+¥? need only be
known at points where these straight line segments (planes)
meet, and the integration over the surface may be performed
assuming a linear distribution between these points.

To illustrate this idea let a two-dimensional domain be
discretised using a regular rectangular grid generating the
computational molecule shown in Fig. 2b. Let the value of ¢
at the grid points be known at some time level #. Clearly, the
value of ¢ at the center point of this molecule (point 0)
represents the value of ¢ averaged over a rectangle the cor-
ners of which are located at the centers of the four rectangles
surrounding point 0. The center points of the rectangles
may be regarded as grid points of a staggered grid. Once the
values of ¢”* /2 at the staggered grid points are known the
value of ¢"*' at point 0 may be calculated using (35). In
this calculation the closed line which consists of four
straight line segments connecting the staggered grid points
serves as the surface S, and the area enclosed by it serves as
the volume V. Following a derivation similar to that of
Eg. (35) the values of ¢" * '/? at the staggered grid points are
calcuilated using

At
n+ /2 __ " - ndS, 36
b =gy (36)

where the subscript ¢ indicates the center of a rectangle, the
corners of which are located at the grid points of the
primary grid; ¢7 is calculated by averaging the four corner
values of ¢, the close line connecting the rectangle corners
serves as the surface S, and the area enclosed by it serves as
the volume V.

Using the values of ¢" at the four corner points of a
rectangle whose size is 4x x Ay and, assuming linear dis-
tribution of ¢ along the lines between the corner points, the
integral on the right-hand side of (36) may be evaluated
yielding

A
[ #dS=857 (= but bu—du) +
LAx
+]7(¢rr_¢br+¢rf_¢bl)v (37)

where the subscripts ¢, b, r, and [ indicate, respectively, top,
bottom, right, and left, with respect to the center of the
rectangle. For example, ¢,, is the value of ¢ at the top right
corner. Substitution of (37) into (36) yields the values of
¢”* '/ at the centers of the four rectangles surrounding the
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center point of the computational molecule. These values
may now be used as corner points in {37} to evaluate the
integral on the right-hand side of (35), and, after some
simple algebra, the expression obtained is

2
Pt =¢"— A{ud . + vg,) + ATI (2@ o+ 2uvd,, +074,),

(38)
where
¢_= 6.r¢'i,j—l + 26.r¢i.j+ 5.\'¢i,j+l
x 4
a_”'zé.r.\’¢i.j—l + 25xx¢i,j+ 5.rx¢r'.j+l
xx 4 3
— O, 20,8, ,+6 0
¢y= _l¢| 1. }4¢‘J .r¢1+1.1, (39)
‘&“"=6)‘)'¢i—l.j+25}1\'¢i,j+5yy¢r'+l,j
oy 4 s
¢ =¢r'71,_17]+¢1‘+1,j+17¢l’+1._i—l_¢i—l,j+l
xy 4A4x Ay ’
and the J operators arc defined by
Tk 107 Tk—l /
6 T — + 1.
xt okt 24 x H]
T 2T T
61er‘1= k+ 1./ kél+ kfl‘f’
Ax
(40)
5 T. = e
vl g1 = 4 ’
¥
T, —2T T
5-”'}—-.'(‘]: k41 Ak2.1+ k,ffl-
¥

Equation (38) conforms to the format of (15) while
employing, as may be seen from (39) and (40), weighted
averages of second-order approximations to the spatial
derivatives. This analysis is also valid if the conservation law
expressed by the Eulerian equation (32) is replaced by the
noninterpolating semi-Lagrangian formulation,

d
—¢+V-FR=O,

a (41)

where Fy=dug is the residual flux of ¢. Using the semi-
Lagrangian formulation, introduction of (39) into (38)
yields
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2 C2 c.C CZ
?:";,Hq:‘t’ﬁj(l_cx; V)"‘ ; - |r-"’m'“’”'‘9"'”"”””=lﬁTJ‘[(l—cos 8.)(1+cos@,)
n n L ” C2
X(qﬁi—l,j—l+¢i+1,}'+l_¢r’+1‘j—l_ v 1) __2_"(] —cos 8,)(1 +cos 0,)
C. L
g @1+ 200+ 60 N+ CY) —C,.C,sinf,sind,
1
—I-[C,sinf{1+cosb,
(¢?+l}—l+2¢1+11+¢1+1,+]](1_C_r] 2[ R ( )
4 C, sin #,(1 8.)). 4
—2C (¢}, 1+ dij)] +Cysind(1+cos6.)] (43)

C, n Since max(|C. |, |C,1)<0.5 the sum of the squares of the
+ [ (@7 o T 200, + 60, )L+ C) real and the imaginary parts of the right-hand side of {43)
doees not exceed unity, thus assuring the reality of o, ie., the

— (B T2, P (L= C) unconditional stability of (42). The damping of the scheme
is examined by introducing (28) into {42), and the damping
—2C(¢7_;+ 8.0 )] (42) coefficient 4 =4 .G,.0..0, 15 equal to the right-hand side
' of (43). Application of (29] to calculate the average value of
| A|? for this scheme yields the result |A|* = 142 = 4 which is closer
The stability of this scheme is analyzed by substituting (26) to unity than the value obtained for the prevnous scheme,
into (42) and dividing through by ¢7 , which yields 1417 = 2, thus indicating that the performance of this
40
5T
30 7
25
8
[
*
‘g 20 T
"z
Tt
[*}
'g s int(Cn)=4
10 1
5
0 T ¥ T T T T
0 ! 2 3 4 5 6 7 8 9 10
Cn-int(Cn)

FIG. 6. The L, norm of the difference between the analytical and the numerical solutions versus € —int(C), where int(C) is the integer part of the

Courant number. The results were obtained afier five crossings of the 64 x 64 domain by a cosine hill with wave length of 40 grid lengths. The Courant
number range is 1.0 < C<5.0.
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scherne, which is based on the flux formulation, is superior
to the performance of the previous scheme, which is based
on the multidimensional Taylor expansion. The expressions
for the one-dimensional damping coefficient and the phase
speed obtained for this scheme arec identical to those
obtained for the previous scheme and given by (30)
and (31).

It must be noted that the validity of the semi-Lagrangian
flux-based scheme given by (42) is by no means limited to a
two-dimensional regular rectangular grid, and extensions to
three dimensions and unstructured grids are straight
forward. It is, however, possible that on some grids the
formulation will be only conditionally stable thus limiting its
utility on such grids to the Eulerian formulation of the
advection equation,

5. COMPUTATIONAL EXAMPLES

To demonstrate the viability of the suggested noninter-
polating semi-Lagrangian Lax—Wendroff scheme a series of
two-dimensional advection tests was performed. The tests
consist of advection of different functions by a constant
velocity vector. The flux-based scheme given by (42) was
employed. In all tests the Courant numbers in the x and y
directions were equal. By advecting a fluid particle from the
nearest grid point rather than from the true departure point
the noninterpolating schemes introduce an error. Clearly,
this error grows with the distance between the departure
point and the nearest grid point. This error is therefore at its
maximum when the residual Courant number is 0.5. To
examine the suggested scheme under the least favorable

TABLEI

Results of the Tests in Which a Function Is Advected Five Times
Across a 64 x 64 Domain Using the Noninterpolating Semi-
Lagrangian Lax—Wendroff Scheme with a Courant Number of 2.5.

Case Max Minx10 Mass Energy L x10 L, x10° [,x10%
! 0935 0206 1.000 0999 0.718 0.654 1.53
2 0986 —0003 [.000 (.99 0.610 0.433 1.70
3 1000 —0117 L0 L1000 0.122 0423 0.83
4 0999 —0.165 1.000 0999 0.200 0.516 1.14
5 0996 —0250 1.000 0997 0.396 0.620 1.66
6 0996 —0419 1400 0991 0.896 0.768 2.68
7 0955 -0819 1000 0960 240 0.997 5.03
Note. In case 1 the advected function is a cone with a base

radius of 30 grid lengths, in Case 2 it is a Gaussian with half-width
of 15 grid lengths, and in Cases 3, 4, 3, 6, and 7 the advected func-
tions are cosine hills with wavelengths of 60, 50, 40, 30, and 20 grid
lengths, respectively. The extremal values of the advected func-
tion ¢ are listed under max and min, and the ratios of |, ¢ and
{2 ¢’ to their initial values are listed as mass and energy, respec-
tively. L, L, and L, represent the corresponding norms of the
difference between the numerical and analytical solutions.
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TABLE Il

Results of the Test in Which a Cosine Hill with Wavelength of
40 Grid Lengths Is Advected across a 64 x 64 Domain Using the
Noninterpolating-Semi-Lagrangian Lax—Wendrofl Scheme with a
Courant number of 2.5.

Cross. no. Max Minx 10 Mass Emergy L. x10 L, x10% L,x10*

0 1.000 0,000 1.000 LOGO 0.000 0.000 0.000

1 1000 —0.088 1.000 0999 0.088 0.135 0.389

2 0997 —0.138 1.000 0999 0.150 0.259 0.718

3 0997 —-0.179 1000 0998 0.232 0.384 £.04

4 0998 —-0216 1.000 0998 0.311 0.501 1.35

5 0996 —0250 1.000 0997 0.396 0.620 1.66
Note. The cross. column indicates the number of times the

function has been advected across the domain (0 indicates initial
conditions). The rest of the notation is as in Table 1.

conditions the Courant numbers in both the x and y
directions were set at 2.5.

In the first test a cone was generated in a square domain
represented on a 64 x 64 cell Cartesian grid. The radius of
the cone at the base was 30 grid lengths. Using periodic
boundary conditions the advection was continued until the
advected funcion crossed (i.e., exited and re-entered) the

TABLE III

Results of the Test in Which a Cosine Hill with Wavelength of
40 Grid Lengths Is Advected across a 64 x 64 Domain Using the
Noninterpolating Semi-Lagrangian Lax-Wendroff Scheme

C Max Minx10 Mass Energy L, x10 L, x10* L,x10*
1.0 1000 —0.000 1000 1.000 0.000 0.000 0.00
1.2 09% —0327 1000 0998 0480 0.743 1.97
14 0995 —0376 1000 0996 0.663 1010 267
16 099 —0343 1000 0.996 0.583 0.890 2.36
1.8 0999 —0247 1000 0999 0.320 0.509 1.36
20 1000 —0.000 1000 1.000 0.000 0.000 0.00
22 1000 —0215 1000 0999 0.342 0419 1.13
24 0998 0264 1000 0998 0.388 0.610 1.63
26 0998 —0249 1000 0998 0.358 0.567 1.52
28 0998 —0.185 1000 0999 0.202 0.333 0.909
30 1000 —0.000 LOGO L1000 0.000 0.000 0.000
32 0999 —0170 1.000 0.999 0.175 0.294 0.807
34 0997 —0210 1000 0998 0272 0.440 1.19
36 0997 -—0203 1000 0998 0.256 0.417 1.13
38 0998 —0.15 1000 1000 0.150 0.249 0.689
40  LO0OO —0.000 1000 1.000 0.000 0.000 0.000
4.2 LO0O  —0.140 1000 1.000 0.140 0.227 0.630
44 0999 —0.180 1000 0999 0.208 0.346 0.948
46 0999 —0.173 1000 0999 0.199 0333 0912
48 0999 013t 1000 1.000 0.131 0.201 0.562
50 1000 —-0000 LOOO 1.000 0.000 0.000 0.000
Note. Datain the table were obtained after five crossings of the

domain. The C column indicates the Courant number. The rest of
the notation is as in Table I.
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domain five times. After each crossing the peak value and
the largest undershoot of the advected function, ¢, were
registered, and the ratios of the “mass,” [, ¢, and the
“energy,” [, ¢°, to their initial values were calculated. Also
calculated were the L, L,, and L, norms of the error
vector, ie., the difference between the analytical and the
numerical solutions at each grid point. After five crossings
(which required 128 time steps) the amplitude of the cone at
its apex was reduced by 6.5%; the largest undershoot was
2% of the initial peak value, the mass was practically

M. OLIM

unchanged, and the energy was reduced by 0.1%. The L,
L,, and L, norms of the error vector were, respectively,
0.072, 0.654 x 10~2, and 0.153 x 10~2, Tnn a second test the
advected function was a Gaussian with a half-width of 15
grid lengths. After five crossings its peak value was reduced
by 1.4%, the largest undershoot was 0.03% of the initial
peak value, the mass was unchanged, and the energy was
reduced by 0.4%. The L, L,, and L, norms of the error
vector were, tespectively, 0.061, 0433x107% and
0.170 x 102, To gain further insight into the performance

FIG. 7. Advection of a slotted cylinder by FCT-corrected Eulerian and semi-Lagrangian Lax—Wendroff schemes. The initial distribution is depicted
in (a), the distributions after four crossings of the domain using an Eulerian scheme with Courant number of 0.5 and a semi-Lagrangian scheme with

Courant number of 2.5 are depicted in (b) and (c), respectively.
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Fig. 7— Continued

of the method the Gaussian was replaced by a cosine hill
whose wave length was 60 grid lengths. Afier five crossings
the peak value, the mass, and the energy were practically
unchanged, and the [argest undershoot was 1.2% of the
initial peak value. The L, L,, and L, norms of the error
vector were, respectively, 00012, 0423x107°, and
083 x 107* The same test was performed for cosine hills
with wavelengths of 50, 40, 30, and 20 grid lengths. The
results of these tests are summarized in Table I and indicate
that the algorithm performs very well, with an expected
improvement at longer wavelengths, The rate at which the
peak and undershoot, the mass and energy ratios, and the
three error norms change may be seen from the data given
in Table IT which lists the values recorded after each
crossing for the cosine hill with a wave length of 40 grid
lengths. The same test was repeated with different values of
the Courant number for the cosine hill with a wave length
of 40 grid lengths. Table 111 lists the data recorded after five
crossings of the domain for Courant numbers ranging {rom
1.0 to 50. As can be seen from the data summarized in
Tables 1, 11, and I}, the scheme conserves mass extremely
well. The mass ratio exhibited variations in the seventh (!)
significant digit. As predicted by the phase speed analysis
in (31} the results improve as the value of nint{C) increases,
This is clearly demonstrated by the values of the L, norm of
the error vector shown in Fig. 6. It may be seen from this
figure that the L, error norm improves (i.e., decreases) as
int(C) increases for a given € — int(C}), where int(C) is the
integer part of the Courant number. For example, the L,
error norm obtained for C = 4.4 is better than that obtained
for C=3.4. Also, the results improve as nint(C) increases.
For example, the L, error norm obtained for C=28 is
better than that obtained for C=2.2. The results shown in

this figure indicate that for int{C)=1 the worst results are
obtained when the noninteger part of the Courant number
is somewhat less than 0.5, This is a result of the fact that the
quality of the results are adversely affected by an increase in
the number of time steps required to complete any given
calculation. Thus, aithough for a single time step
C —int{C)= (.5 constitutes the least favorable condition,
when the numer of time steps required to complete a
calculation with, say, C = 1.4 is sufficiently larger than that
required to complete a calculation with C = 1.5, the adverse
effect of the increased number of time steps is noticeable.
These resuits, and especially the undershoots, may
be significantly improved by employing a monotonicity
preserving scheme, Since overshoots and undershoots are
generated mainly in the vicinity of steep gradients the advec-
tion of a slotted cylinder provides a stringent test of the
ability of an advection scheme to preserve monotonicity.
The slotted cylinder test was employed in {15] to
demonstrate the viability of the FCT correction in a muiti-
dimensional domain. Here this test is employed to
demonstrate the advantages of the FCT-corrected semi-
Lagrangian Lax-Wendroff scheme over its Eulerian coun-
terpart in two dimensions. The square domain was
represented on a 100 % 100 Cartesian grid, and the slotred
cylinder was placed in the center of the domain as shown in
Fig. 7a. The diameter of the cylinder was 40 grid lengths, the
width of the “bridge” connecting the two cylinder halves
was 15 grid lengths, and the width of the gap was 12 grid
lengths. An Eulerian FCT-correctd Lax—Wendroff scheme
was employed to advect this cylinder through the domain
four times. The Courant number in this test was 0.5 in both
directions; i.e., 800 time steps were reqguired to complete the
test. The result is depicted in Fig. 7b. The advection test was
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repeated with 2 FCT-corrected semi-Lagrangian Lax—Wen-
droff method using 2 Courant number of 2.5, thus requiring
80 time steps (as explained earlier, a residual Courant num-
ber of 0.5 is the least favorable for the scheme). The result of
this test is depicted in Fig, 7¢c. The results of the two tests are
compared by examining the filling-in of the gap, erosion of
the bridge, and the sharpness of the profile defining the
surface of the cylinder. The performance of the semi-
Lagrangian scheme is clearly superior to that of its Eulerian
counterpart.

6. CONCLUSIONS

A truly noninterpolating semi-Lagrangian method has
been develped. It is based upon a modification of the one-
step Lax-Wendroff algorithm and is unconditionally stable
on a regular rectangular grid. The algorithm is explicit and
is second-order accurate in both time and space. [t may be
converted into a monotonicity-preserving scheme following
exactly the same steps required for similar conversion of a
traditional Lax—-Wendroff algorithm. Being explicit and
truly noninterpolating, the suggested algorithm requires the
least possible computation cost for an algorithm of this
order of accuracy. At the same time it is a two-time level
algorithm thus requiring the least pessible allocation of
computer memory for data storage. Our numerical
cxperiments indicate that the algorithm is extremely
accurate.
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